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BUCKLING OF SEGMENTS OF TOROIDAL SHELLS

By Manuel Stein and John A. McElman
NASA Langley Research Center

#

Nonlinear differential equations of equilibrium and buckling equations are derived
for segments of toroidal shells near the equator and for segments near the crown. The
equations are derived for shallow shell segments by including appropriate prescribed
initial displacements in the nonlinear, flat plate, strain-displacement equations and by
varying the total potential energy of the system. Closed form solutions to the buckling
equations are obtained for simply supported segments near the equator having either posi-
tive or negative Gaussian curvature under pressure loading with various inplane support
conditions. Results are presented in the form of charts showing buckling coefficlents as
a function of a curvature parameter associated with the girth of the shell and a param-
eter associated with the ratio of principal curvatures. In many instances the results
indicate significant deviations in buckling stress for the toroidal shells over the

buckling stress for the corresponding circular cylindrical shell under similar loading

and support conditions. -
—

INTRODUCTION

Shells of double curvature are common in aerospace vehicle structures, aﬂa buckling
1s often an important design consideration for such shells. 1In this paper nonlinear dif-
ferential equations of equilibrium and buckling equations are derived for segments of
toroldal shells, a type of double curvature shell which is attracﬁing considerable
interest at the present time. Solutions to the buckling equations are obtained for seg-
ments of toroidal shells near the equator‘géz;pg elther positive or negative Gaussian
curvature (see fig. 1) subjected to various pressure loadings.

The nonlinear equilibrium equations are derived for shallow shell segments by
including appropriate prescribed initial displacements in the nonlinear, flat plate,

strain-displacement relations and by varying the total potential energy of the system.
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These equations reduce to the large deflection Donnell equstions for the case of a cir-
cular cylindrical shell, and to the Marguerre large deflection equations for the case of
a shallow spherical cap. The buckling equations are derived from the nonlinear equations
in a rigorous manner by assumlng the changes which occur at buckling to be small. One
set of equations 1s obtalned which 1s applicable to segments of a toroidal shell near the
crown, and another set 1s obtained which is applicable to segments near the equator. For
segments near the equator, the classical assumption of constant deflection prior to
buckling leads to buckling equations which are the same as those given by Becker 1n ref-
erence 1 for shells of double curvature having constant, but not necessarily equal,
principal curvatures.

Closed form solutions are presented to the buckling equations (cbtained by using the
classical assumption) for segments of toroidal shells near the equator subJected to
lateral pressure. The assumed edge support conditions are simple support either with
zero edge displacement, with hydrostatic pressure loaded edges or with freedom for over-
all edge extension in the axial direction. Results are presented in the form of charts
showing buckling stress coefficient as a function of a curvature parameter associated
with the girth of the shell and a parameter associated with the ratio of principal curva-
tures. The results indicate significant deviations in buckling stress for the toroidal
shells over the buckling stress for the corresponding circular cylindrical shell under
similar loading and support conditions.

For many buckling problems involving deep shells, shallow shell analysis should give
engineering estimates to overall buckling loads. In the present paper an estimate of the
external buckling pressure for a complete torus is obtained on the basis of the study of

the shallow segment near the outer equator.

SYMBOLS
a radius of curvature (figs. 1 and 2)
A,B,C constants
Et3
D flexural stiffness of shell wall,
1201 - u2)
-2 -
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ex) eyJ 7W

ep’€6’7p9

Young's modulus

pr12
D2

buckling coefficient, -

length of shell

integers

stress resultants in rectangular coordinates
stress resultants in cylindrical coordinates

lateral pressure - positive in positive w direction

cylindrical coordinates

radius of shell equator (fig. 1)

central radius of toroidal segment near crown (fig. 2)

shell wall thickness

displacements, tangential and normal to the shell neutral surface
displacements in x and y directions

initial deflection

rectangular coordinates

curvature parameter, r/a
buckle wavelength parameter, nl/xr

direct strains and shearing strain in rectangular coordinates
direct strains and shearing strain in cylindrical coordinates

Polsson's ratio

total potential energy of shell

where V° is the Laplacian operator in two dimensions
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Subscripts:
A refers to prebuckling displacements and stress resultants
B refers to buckling displacements and stress resultants

A comma indicates partial differentiation with respect to the subscripts following

the comma.

NONLINEAR DIFFERENTTAL EQUATIONS OF EQUILIBRIUM

In this section the nonlinear differential equations of equilibrium are derived for
shallow segments of a torus near the equators and near the crown. For segments near the
equators the equations are derived in the rectangulsr coordinates of an osculating plane.
For segments near the crown the equations are derived in plane polar coordinates. In
both cases the equations are derived from the strains of nonlinear flat plate theory
including initial deflections (see ref. 2) using the minimum potential energy method to

obtain equations of equilibrium by the application of a variational procedure.

Segments Near the Equators
The strains for thin flat plates with u and Vv the displacements in the x and
y directions, respectively, and with initial deflection wgy and additional deflection

w are given in rectangular coordinates as follows:

~
=3 1 2
€x = u,x + E(W,x) + w’xwo,x - Zw’x_x
_= 1 2
ey =V,y Q(W)Y) * W, yvo,y - ZW,yy (1)
Txy =Wy Y V,x TV x¥ oy * WoxWo,y + W gV x - 2zw,xz

For an initial deflection corresponding to segments at the outer equator of a torus of
radius r, which has positive Gaussian curvature and which is taken here to have constant

curvature 1/a 1in the meridional direction (see fig. 1), wp 1is taken to be

2 2
y X
W T om - — 28,
° 2r 2a ( )
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The assumption that the initial deflections can be represented in quadratic form is con-
sistent with shallow shell approximations. For segments at the inner equator the initial

deflection has negative Gaussian curvature and the corresponding equation for wo 1is:

m

Wo = = I— + == (%)

If equation (2a) or (2b) is substituted in equations (1) and if the following defi-

nitions are used

e
i
ot
I+
E)
X

.y (3)
V=V—WF
then
-
- w1 2 _
€x =Y x + o ch,x) ZW xx
_ W, 1l 2 >
ey=V,y tz + E(w’y) - W yy (%)

Txy = W,y tV,x t W Wy - Ezw’xy

where the new u and v can be identified as the tangential displacements of the neu-
tral surface of the shallow shell and w can now be regarded as the normal displacement.
In equations (3) and (4) and in the equations that follow, the convention is used that
when there is a double sign the upper sign applies to the shell with positive Gaussian
curvature and the lower to the shell with negative Gaussian curvature.

The total potential energy of such shells subject to a lateral pressure p 1s

- E 2 2 l-p 2

I = 5 w(ex+ey+2uexs+ > 7xy)dxdydz—p w dx dy (5)
21 -

Integration in the 2z direction and varlation according to the minimum potential energy

method by the calculus of veriations leads to the nonlinear differential equations of

equilibrium and consistent boundary conditions. The equations of equilibrium are:




Nx:x ny’y =

+
=
H
o

Ny,y + Yay,x | (6)

?.
-+
|5
5
1

(NXW;XX + Nyw)yy + Enyw’xy) = pJ

where

Ny = 3 ?tue(ex + uey)‘zzo\

Ny = Z—%Egg(ey + uex) ) (7)
Et

My = 2(1 + p)(7xy)lz=0

Note that these equations with a — o are the Donnell large deflection equations for a
cylinder and, if in additlon r - o, then they reduce, of course, to the von Karmhn large

deflection equations for a flat plate.

Segments Near the Crown
The strains for a thin flat plate with an initial deflection wg are given in polar

coordinates as follows:

- 1 2 ~
€p = Up ¥ 5(",9) + ¥, p¥o,p = ZVW,pp

=1 u, 1 241 . 1 8
=5Vt 5 + g(w’e) + =5 W g¥o,0 ~ 2[5 ¥, 00 + 5 Y0 (8)

2p p p

=1 vl 1 1 1 -

7w Tp%e *Ve "t 5o ¥,0ve T 5 ¥,eY0,0 T 5 Y,0%0,0 " 22(? ¥, 08 02 W,?)
/

where w 1s the additional deflection. For an initial deflection corresponding to seg-
ments at the crown of a torus of central radius R where the torus is taken here to have
constant meridional curvature l/a (see rig. 2), wo 1s taken to be
( 2
WO = - ;aR) (9)

As before, the assumption that the initial deflections can be represented in quadratic

form is consistent with the shallow shell approximation. Thus
-6 -




_ 1 2
€p = U,p * -2—(W,Q> - ( a >W’p - Z¥,pp

=1 u, 1 - 1
€y = 5 Vet 5 (w’e) z<p2 W.oeg * 5 w,p>

_ 1 v, 1 p - 1 1
708 —-Eu,e +v’p -E+Ew’pw’e—<pa >w,e - 2z<—5w,m - W

The total votential energy of such a shell subject to a lateral pressure p is

(10)

_ E (2 2 l-p 2 .
I 2(1_“2 ﬂf\ep + € +2u€pee+ > 7pe)pdpd6 dZ—pﬂwpdpqe (11)

Integration in the 2z direction and variation according to the minimum potential energy

method by the calculus of variations leads to the nonlinear differential equations of

equilibrium and consistent boundary conditions. The equations of equilibrium are

1
+ = - =

%(Ne,e + 2N09) + Ng,p =0

N
p p-R 1 1 2 2 _
e 2 BT - <Np":°° * o2 o0 T 5 Netp T g Nee¥,00 - 5 Npe"ﬂ) )

where

~
Np =

= 5 (60 + He)

l..u z=0

VL

Yo = 1 iwu2 (ee * ll€p)| 2=0

. Et
Voo = 2(1 + u) (7pe)| 2=0

=

p

)

(12)

—~
'._l
Wl
p e

These equations with R = 0 reduce to the Marguerre large deflection shallow spherical

cap equations.

BUCKLING EQUATIONS

Buckling equations are derived on the premise of bifurcation behavior with the non~

linear equations just derived used to determine the deformations and stresses prior to

buckling and to determine the buckling equations.
- 7 -




For the problems considered, the shell prior to buckling deforms axisymmetrically.
Small changes from this configuration, not necessarily axisymmetric changes, are con-
sidered in order to cobtaln the buckling equations. Buckling equations are also derived

using the assumption that the deflection w 1is constant prior to buckling.

Segments Near the Equator
Prior to buckling for the problems considered the deformations would be axisym-
metric; thus equations (6), with the variables functions of x only, would apply. Thus,

for axisymmetric deformations

NXA,X =0

Nxya,x =0 (1)
N N
XA

D, so0et T ¥ T MxAVa,x = B

where
Et YA, 1.2 WA
2 r— + = = —
Mxa l_ueEA;x_a FEVax J

R ( LA 12
Y- R -

Nywa = ——22 _
xyA 2(1 + u) A,x

To the prebuckling deformations obtainable from these equations and the boundary condi-
tions, small changes that occur during buckling may be added (u =uy +ug, V =V, + Vg,
W= Wt wB), and the sum should also satisfy equations (6). The above relations may be
subtracted out after the sums are inserted in equations (6), and terms of higher degree

than linear in the buckling displacement may be neglected to give the buckling equations

which follow:




NxB,x + Neyp,y = 0

NyB,y * NxyB,x = O

Nxg | NyB (15)
DV“'WB + T + }&r—- - (NXAWB,X.X + NXBWA,)(X + NyAwB’yy + NwaA,yy
+ Aoyavp, xy + DyB¥A,xy) = O )
where
— u -

= Bt + 7B ]
Nyp = T ue u’B,x = + wA,ow,x + p(VB,y + = + wA,y“B,y)

_ Bt VB + B
NyB = I—:—;E VB,y + = + wA,wa,y + p(FB’x = + wA,ow,x

Et
nyB = E(i—:—ay(uB’y + vB,x + wA,ow,y + wA,wa,x)

These equations have variable coefficients and would be quite difficult to solve for many
cases.

If, instead, the assumption analogous to that of classical cylinder buckling theory
is made, that the deflection w 1s constant prior to buckling (WA = Constant), then with
P, the pressure, a known constant it may be seen from equations (14) that Nyp and NyA
must be constant also. Equations from which these constants may be determined for differ-

ent inplane end conditions are

~N
Nxa = 1 ?tue(PA,x * 2? tu ;ﬁ)
l1-p

In these expressions wuy , 1s also constant, and therefore, for the special case of
2
up = 0 at both ends up, x would be zero. Three different inplane end conditions are

considered for the problems solved in this paper and are discussed in a subsequent

section.




With wp a constant the buckling equations can be written

~
Ny_B"_ + X_‘;’B ¥ 0
NyB,y * NxyB,x = 0 (17)
N N
yB
DV“wB -+ L= . (NXAVB,xx + NyAVB,yy + QNXYAVB,xy) 0

where

_ _Et + 7B ¥B
Nyp = l_—ugElB,x = T “(VB,y e

_ _Et Vg ( N WB)
B = I—_—:E'E'B,y T TRUBx T w

N = =2 fun o + v
xyB 2(l+u)<B’y Bﬂ‘)

These buckling equations, obtained through the classical assumption, have constant coef-
ficlents and agree with those derived by Becker in reference 1; with a —» « they agree

with the Donnell equations for buckling of a cylinder.

Segments Near the Crown
Prior to buckling, for the problems considered, the deformations would be axisym-

metric; thus equations (12) with the variables functions of p, only, would apply:
1 =
No, a0 *+ 3(Npa - Noa) = O

2 -
S Noon + Noga,p = 0

D) (1 Noo p-R 1 B
Bp[ﬁ(pr:p);J o Pt e Yea - (Noa¥aep 5 MeAAp ) TP
)

where

Et 1 2 (p - R> ua
T em—— + = - + —
oA = T 2 EA,O 5 "a0 " A0\ a -
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_ Bt YA 1.2 p - R
oA = 1T ue[F i “(uArp TEe T TE A

N £t v
poA = m("m i F)

Proceeding as for segments near the equator, the buckling equations are

|
O

1
NoB,p * 3<NpB - Ngp + NpeB,e) =
L + 2N +N =0
5 (NeB,0 OB 08B, p

N
0B p - R 1 1 1
MWB + e + ———-—pa NeB - <NDAWB,QQ + NQBWA,QD + -pE NGAWB,GG + ;2— NeBWA’ee + B- NeAWB’p
2

1 2 2 2 _
* 5 YoB¥A, 0 * 5 Nooa¥B,p0 * 5 NooBYA, 00 - 2 N a¥B,6 - 2 NpeBWA,e> =0

where

Et p-R 1 Up 1
= - - + —_—t =
ToB 1 - u2lEB:p T VA, p¥B, 0 ( a )wB’p ¥ u(p VB T B 02 “A,0"B,0

_ Et N UB 1 _(e_- R)
NgB = _I—-é& VB,O + ry + n—2- WA,eWB,e + 'J'E)‘B,p + wA,pr,p (————& wB,p

L = WUy

Et 1 VB 1 1 (p - )
= — = + - —_— = W. + = W W - | —_—}w
NpGB 2(1 + p.)|; uB:e VB:p p p wA:p B,6 p "B,p"A,8 pa B,8

For the segment of the toroidal shell near the crown, it 1s expected that the classical
assumption of constant deflection wp prior to buckling will give reasonable stress

resultants. With this assumption the prebuckling stress resultants can be found from
N s LN, - M) =0
PA,p p\ PA O A

2 =
5N09A+ NpeA,p =0

- 11 -




NpA p-R
a pa

Ngp =P

The buckling equations then become
N + LN - N + N -0
PB,p T p\'PB 0B po3B,8

%( oB,0 * QNpeB) + NogB,p = O

N
pPB  p-R 1
IN]+WB + —_— NeB - <NQAWB, pp + ;E NSAWB,GG

8 pa

1 2 2 =
+ E NSAWB,p + -6- NpeAWBJpe - -.;E NpeAWB’e> =0

where

Et p-R 1 uB)
= = - + ul= + —
NeB 1.2 EB:D ( a )WB;D “(p VB,6 T D

_Et up (p - R)
NoB = 1 - u2{6 VB:e * ) * “EB:D - a wBJp

N = Bt L u + v B (p _ R)w
peB = 21+ WP B8 B,p = P pe ) "B,8

SOLUTIONS FOR SEGMENTS NEAR EQUATORS

Closed form solutions to the buckling equations just derived are now presented for
simply supported segments of toroidal shells near the equators under pressure loading
with various inplane support conditions. The shells considered extend completely around
the equator, and the equator lies at their midlength (see fig. 1). Shells of both posi-
tive and negative Gaussian curvature are considered.

The inplane support conditions considered are listed below together with the Ny,
and Nyp determined (on the basis of the classical assumption that wg 1s a constant)

from equation (16):

- 12 -




(a) zero edge load W
NXA=O
NyA = pr
(b) hydrostatic pressure loaded
- Br
NXA_?
r
Nyp = pr(l ¥ ——)
g 2a > (18)
(c) zero edge displacement, uy =0
kel
P\T a)
Ngp =
LigE-{-_l_
re TA g2
1.k
e
vA " 2; + EE + 3;
2 Tra g2

With no applied shear stress, nyA = 0,
The buckling equations (17), obtained through the classical assumption may be

written in terms of up, vp, Wp &s (dropping the subscript B)

u,,‘,+l—‘-Eum,+l+uV +(&iiwx=0 w
P Rt 2 )V 2 5 \T a;j 2
1+qp 1-p 1.4 =
2 qu+v’yy+ 2 V,xx+ r a) Y 0
(19)
i ([T £+&> 1 g2, 1
DVt + 1 ug[ir - a)u;x M (r eyt g2 ar * 2 v
- (Nwa,x_x FNppW 2nyA",;q> =0

J
With the origin now taken along the lower edge, the simple support boundary condi-
tions on the buckling displacements at x =0, 1 are

WoEWogx =V =Ng=0 (20)

- 13 -




Solitions which satisfy the boundary conditions, equation (20), and the differ-

ential equations (19) for any one of the three inplane edge conditions are

<
i
o
[42]
Pc
=)
Q
o)
1]

muX ny (21)
1 r

b
It
Q
w0
e
o]
[0}
e
=i

For the problems considered here m = 1 applies, since it gilves the lowest buckling
load. The buckling loads found from this solution as a function of the number of cir-

cumferential waves n are given by the following relations:

1+p2) 4 1+ op? W
( 122, + o) |
k = for zero edge loading
2 2 2
p2(1 + p2)
L 2
12z 2
(1+8%) + —( ap?) |
k = X for hydrostatic pressure loading
1 2 (22)

-2-(1 + 282 7 ap®)(1 + p2)

(1+ Be)” . 1222(1 R a32)2

N
k = I for zero edge displacement
pta+ (1 +pa)p? )2
(l + B )
o) J
o~ * 2ua + 1
2
pri nl r 12
where k = - B , B = w YT and Z = = 1 - uz. The buckling pressures are

obtalned from equations (22) when k 1s minimized with respect to allowable changes in
B for given Z and «a.

The buckling pressure coefficients have been calculated for Poisson's ratio
M= 1/5 and the results of the calculations are plotted in figures 3 to 6. TFor the
shell of positive Gaussian curvature under external pressure the results for higher
values of Z 1lie along a straight line as shown on the logarithmic plot. Simple
results for the critical pressure obtained analytically (assuming B large) for any

value of Polsson's ratio are presented below for these straight line regions:

- 14 -




-p = L 75 i‘:— for zero edge loading
2
b -]
2 EtZ
-p = —— for hydrostatic pressure loading
1/2 ar
(2 - o) Z(l - ||2\.|
L R vy
) 2
-p 1+ cuata Et for zero edge displacement

) (1 + a) |:3(l - uzillle =

ESTIMATE OF EXTERNAL BUCKLING PRESSURE FOR COMPLETE TORUS

Prebuckling values for the stress resultants for the pressure loading of a complete

torus analogous to those obtained for the shallow shell (see eq. (20)) are

a
N = pafl - —
XA = P ( 2r)
o m (23)
YA = 5
and proceeding with these values as for the shallow shell leads to
o\t 1272 2)2
(1+8 )+ ——I-(l + ap2)
k = 5 X (24)
(1+82) (g—;-—%+i-32>
2 2a
Finally, for B large, the buckling pressure can be estimaied to be {probably not
valid for a circular torus when r/a is much greater than 2)
2 Et2
= Ee” (25)

[3(1 ) “2)]1/2 a2

This result indicates that the torus buckles when the clrcumferential stress reaches

0.6 E;t-. The classical results show that a cylinder of radius a 1n axial compression

buckles when the axial stress reaches 0.6 %— and the circumferential stress is zero.
The sphere of radius a under hydrostatic pressure buckles when the stress (in any

direction) reaches 0.6 %—. However, the torus under hydrostatic pressure buckles when

- 15 -




the circumferential stress reaches 0.6 %? even though the meridional stress exceeds

this value.
DISCUSSION OF RESULTS

Nonlinear equations for segments of toroidal shells near the equator and near the
crown have been derived from flat plate equations by including appropriate prescribed
initial deflections. Buckling equations have been derived for both kinds of segments.
Utilizing the classical assumption of constant deflections prior to buckling, buckling
equations with constant coefficients have been obtained for segments near the equator.
These equations have been solved in closed form for pressure loading of simply supported
segments with both positive and negative Gausslan curvature having three different
inplane edge conditions: (l) zerc edge load, (2) hydrostatic-pressure-loaded, and
(3) zero edge displacement.

Results obtained for the case of external fressure buckling with zero edge load
(lateral pressure) are presented in figure 3. For a given value of the curvature param-
eter 7 associated with the girth of the shell the external pressure required for
buckling increases significantly over the buckling pressure for the cylinder (r/a = 0)
as the curvature in the meridionsal direction is increased to form a shell of positive
Gaussian curvature. The corresponding external pressure decreases significantly as the
curvature in the meridional direction is increased to form a shell of negative Gausslan
curvature. For higher values of Z, the curve for the cylinder (r/a = 0) has a slope
one-half. For the spherical segment (r/a = 1) the curve has a slope of unity. And for
the corresponding shell (r/a = 1) of negative Gaussian curvature the curve has a slope
of zero; thus the curvature contributes 1little to the strength. Both the shell of
positive and the shell of negative curvature do not buckle under internal pressure for
this inplane edge condition.

Results obtained for the case of external hydrostatic pressure buckling are pre-
sented in figure 4. These results follow trends similar to the lateral pressure results

and again both the shell of positive and negative Gaussian curvature do not buckle under

- 16 -




internal pressure. Again significant increases in external pressure required for
buckling are available for shells of positive Gaussian curvature over cylinders of the
same curvature parameter Z, and significant decreases in buckling pressure occur for
shells of negative Gaussian curvature over cylinders of the same Z.

Results obtalned for the cases of external and internal pressure buckiing, respec-
tively, of shells with zero edge displacement are presented in figures 5 and 6. In the
case of external pressure as shown in figure 5 significant increases in the pressure
required for buckling are available for shells of both positive and negative Gaussian
curvature over that for a cylinder at the same value of the curvature parameter Z.

Due to the u = 0 condltion, tensile stresses develop at the edges that tend to sta-
bilize the shell of negative curvature as the ratio of radii r/a increases. The
shell with negative Gaussian curvature also buckles under internal pressure with this
zero edge displacement condition (see fig. 6) provided the ratio r/a 1is greater than
Poisson's ratio u. As r/a increases for given Z compressive stresses at the edges

increase and cause a decrease in the buckling pressure.
CONCLUDING REMARKS

The present analysis starts with accepted (von K&rmén) nonlinear flat plate strains
including initial deflections and in a consistent and straightforward manner derives
nonlinear shallow shell equations from which buckling equations are determined. Non-
linear equations and buckling equations for other shallow shells such as conical frustums
away from the apex and segments of toroidal shells away from the equator or crown may be
derived in a similar manner.

Buckling pressures have been obtained in chart form for simply supported toroidal
segments near the equators having both positive and negative Gaussian curvature. Three
inplane edge conditions are considered. ILimiting values of the buckling pressure for
shells of large Z having positive Gaussian curvature are given in equation form. An
estimate based on this shallow shell theory of the buckling pressure of a complete torus
is also given in equation form.

- 17 -




The present theory is limited by the shallow shell approximation which, however,
may not be too serious for deeper shell buckling analysis. This conjecture that shallow

nnnnnnn T
'la'l'lt\—.n o}

4 -
ACUL Y uay [

e used to analyze sume deep shells is based on the consideration that
shells buckle first where the curvature is most shallow. This consideration was used in
estimating the buckling pressure for the complete torus.

Another limitation of the present results exists because of the disagreement
between some shell buckling solutions for perfect shells and experiment. For the cylin-
der under external pressure, there is good agreement between theory and experiment. How-
ever, for the spherical segment it 1s expected that agreement between theory and experi-
ment will not be nearly as good as for the cylinder judging from buckling results for the
spherical cap. Similar limitations probably arise for the buckling of other toroidal

segments and for the complete torus. Thus, for design purposes the present results may

only serve as a guide by specifying the buckling pressure for a perfect shell.
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